Showing posts with label Crop. Show all posts
Showing posts with label Crop. Show all posts

Wednesday, October 23, 2019

A Way to Enhance Hail Prevention Technique and to Increase the Efficiency of Anti-Hail Protection of Unlimited Agricultural Areas-Juniper Publishers

Agricultural Research & Technology: Open Access Journal

 

Abstract

In this article a new method and a station of anti-hail protection are described based on the early prevention of hail formation by significant shock waves, enriched by silver iodide or other reagents, allowing implement fully autonomous and automotive anti-hail protection of rural and urban areas of any size, restricted or unrestricted.

Introduction

Despite the best efforts of the authorities, farmers and researchers the protection of rural and urban areas from hail remains an actual problem for all countries subject to hailstorm, since every year, hail continues to cause irretrievable, great and severe damage to agriculture, rural and urban vegetation and properties, both, civil and state. To suppress hail power and to reduce damage from hail in agriculture and in the economy it is necessary to use anti-hail protection methods and stations that will be more efficient in application and chip in exploitation. At present the anti-hail protection of width areas is implemented by the following methods: seeding of clouds with silver iodide or other substances, which induce freezing to occur at warmer temperatures than otherwise, and the use of sonic cannons (gas-generators) or other kinds of explosive devices, which involves supersonic and significant shock waves generation and their direction upwardly to the sky, to transports positive ions from ground level to cloud level which disrupt formation of hail nuclei. Both described techniques are not efficient against already formed hailstones, so the most important requirement in their application remains their timely startup. A developed method of hail generative clouds early detection, based on the measuring of clouds intrinsic emission in radiofrequencies [1-10], allows interrupt hail formation in cumulonimbus and to implement fully autonomous and automotive anti-hail protection of any areas of any size. However, to increase efficiency of protection against hail, it is advisable to combine sometimes two described methods, and to enrich the ground level by reagents, which will then be moved to cloud level by shock waves. In this presentation will be described a new method and a station of anti-hail protection based on the early prevention of hail formation by significant shock waves, enriched by silver iodide or other reagents, allowing implement fully autonomous and automotive anti-hail protection of rural and urban areas of any size, restricted or unrestricted.

Clouds seeding by shock waves for hail prevention

In Figure 1 an option from [3] for implementation of fully autonomous and automatically functioning large-scale network of anti-hail protection is presented allowing to protect a vast (practically unrestricted) area (1) comprising M>>1 spatially distributed protected sites (2) 50-70 hectares each and hail trapping areas (2T). Each protected site (2) and hail trapping area (2T) is equipped with an anti-hail protection system (4) comprising a powerful supersonic cannon (gas-generator) and a local detector-alerter for early detection of impending hail or hail generative clouds, by measuring apparent temperature of the corresponding part of the sky just over the protected site or hail trapping area, and for timely starting-up the corresponding site’s and trapping area’s gas-generators (supersonic cannons). Detailed block diagrams of the corresponding site’s anti-hail protection system including a local detector-alerter and a gas-generator and initially described in [4-10] are presented in Figure 2.
The marginal sites of the protected area (1) in addition are equipped with a remote sensing complex of K far-detection (far-ranging) systems (3) spatially distributed along the edges of the protected area as shown in Figure 1. The remote sensing complex which serves the whole protected area (1) of M sites is used for far-ranging detection of hail or hail generative clouds over an adjacent land all around the protected area at a horizontal distance 4-6km far from the edge (boundary) of the protected area (1) and at the altitude 3-5km, as well as for warning the anti-hail protection systems of the protected sites of the protected area (1) by transmitting on the air the warning signals on impending hail danger from a certain adjacent land of the protected area of M sites. The number K depends on the type of spatial distribution of M sites and it can have a value from the interval [1M], e.g. if M sites are spatially distributed around a common center it will be possible to use only one (K=1) far detection system. If all M sites are located far apart as a long chain then for entire serving the protected area of M sites it will be necessary to use K=M far detection systems. Depending on the terrain relief, any of the far detection systems can be installed individually, near or at a distance from the corresponding detector-alerter, inside or outside the corresponding protection site, etc. Further actions of the chain are described in detail in [2,3]. A detailed block diagram of the far detection system is presented in [1-10].
When M=K=1 the option of Figure 1 is performed into the outline of a version of implementation of a local network of autonomous and automatically functioning anti-hail protection of the protected site (2) of a limited size, including a restricted area like one of the marginal sites of Figure 1 and one or more trapping areas (2T) [1]. Operation actions of the local network of an antihail protection of a locally restricted area are described in detail in [1]. Sometimes, some of marginal gas-generators of Figure 1 and gas-generators of the trapping areas can be equipped in addition by reagent injecting facilities, which can enhance hail trapping and can make hail to fall out in trapping areas and thereby quickly neutralize hail threat. A block diagram of the anti-hail protection system (4) including the local detector-alerter and the gasgenerator with reagent injecting facilities is presented in Figure 2.
When the far-range detector-alerter of any azimuth direction detects hail cloud or cumulonimbus coming from certain azimuth direction it warns detector-alerters of nearby located protected sites. Simultaneously it warns as well detector-alerters of the relevant trapping areas (2T) by transmitting on the air warning code-signals about impending hail danger from the certain direction. In a case if the far-range detector-alerter detects a cloud of severe hail the detector-alerters of nearby located protected sites turn-off their gas-generators to skip impending hail cloud. In opposite, the detector-alerters of the relevant trapping areas set the “alert mode” of operation for their gas-generators and start-up their gas-generators when the signals of sky brightness temperature (apparent temperatures) exceed the “alert” threshold level. Detector-alerters of the involved trapping areas turn-off their gas-generators when the corresponding far-range detectoralerters interrupt transmitting warning code signals on impending hail danger and when the levels of the signals of sky intrinsic microwave emission measured by their detector-alerters fall below the “alert” thresholds levels. During the first few explosions, a reagent is injected into the combustion chamber of the gasgenerator, which, as a result of an explosion leaves the combustion chamber through the conical barrel of the gas generator and enriching the ground level of the air with microscopic particles After that, due to the successions of significant shock waves the particles of the injected reagent, together with existed in the air positive ions are transported from ground level to cloud level. So, by this way it is possible to increase the probability of disruption of formation of hail nuclei and to implement fully autonomous and automatic trapping of hail and to enhance protection possibilities of the above described networks of locally restricted and wideranging anti-hail protections.

Conclusion

Despite the fact that joint application of reagents and shock waves can increase the cost of anti-hail protection and pollution level of agricultural fields and environment, however the combination of both techniques clouds seeding by reagents and impact on clouds by generated and directed upwardly to the sky supersonic and significant shock waves can enhance the probability of hail prevention and hail suppression 

To Know More About Agriculture Research & Technology Open Access Journal Please click on:
 
To Know More About Open Access Journals Please click on: ttps://juniperpublishers.com/index.php

Friday, September 27, 2019

Highland Agricultural Knowledge in Migrant Families (Argentina)-Juniper Publishers

 Agricultural Research & Technology: Open Access Journal    

      Abstract

Migrant families are key to observe the dynamic relationship between social groups and their territories. We have analyzed different aspects of the migration process of a large group of people in Argentina that currently dwell in a lowland’s peri-urban location (Buenos Aires Metropolitan Area) but whose genealogical origins are placed in Jujuy Province rural highlands (Humahuaca and Tilcara Departments). This paper presents a brief communication about our results and findings of a long-term research on agricultural practices and knowledge deployed in both geographical areas, which are united by a considerable migrant flow intensified during the last three decades. Regularities and changes in family farming type of organization and food knowledge and practices, are key to understand the cultural heritage firmly rooted in these families and the strength and sustainability of the migration process.
Keywords:Upland to lowland migration; Agricultural knowledge and practices; Knowledge transmission; Argentina


Introduction

This case study presents the analysis of knowledge transmission related to agricultural practices and representations of rural migrant families in Argentina, from an anthropological approach, with emphasis in two articulated issues. On the one hand, the material aspect regarding the agricultural productive practices and, on the other hand, a symbolic aspect which informs the agricultural knowledge system. We consider the agricultural practices as the link connecting territory - identity - food [1]. In addition, it comprises particular inherited representations, beliefs, knowledge and practices that those individuals within a specific socio-cultural group learn and share, in which certain regularities and features are established [2].
The study includes two different geographical areas (Figure 1). The first of them is in Florencio Varela District, in the Southern Metropolitan Area, in the Buenos Aires City’s peri-urban border. Great amounts of migrant families from very different origins form part of the population, making it a large reception area. In this region, there is no cattle raising activities. The second one, is in Humahuaca and Tilcara Departments (Jujuy Province), in the Northern area of Quebrada de Humahuaca, a narrow mountain valley. In this Province the population in the rural area’s accounts for 40% [3]. The more relevant economic activity is horti- floriculture production complemented by herding for self-supply and exchange.
The study of migrant mountain families’ agricultural practices and representations presents a privileged stage to understand those strategies they displayed in the lowlands, which combine knowledge transmission and adaptability to the current location. The results of the analysis led us to understand a) the identity building process in migrant context through the production, elaboration and consumption of specific meals; b) the reproduction in lowlands of similar agricultural patterns (family farming); c) social health through a culturally adequate food. To address these issues, we have been doing ethnographic fieldwork for the past ten years, carrying out different activities: observations and participant observations of agrarian productive system : in-depth interviews to families through snowball methodology [4] : geographic information analysis. In addition, we have used other data such as national population and agricultural censuses, photographic and historic documents, among others.


Case Report

Along the last 3 decades, a profound change in food practices has taken place. It included, for lowlands and highlands, new food supply in everyday diet (fresh or industrial). This process made people slowly abandon traditional and local food practices, which has negatively affected social local health. However, both in rural and urban areas there is a strong cultural memory regarding local foods as a central element for their personal and community territorial identity [5,6], and many people recreates, for special occasions, those meals they remember having made by their mothers or grandmothers in highland homes. In Florencio Varela, highland families have abandoned quite significantly daily food practices of their home territory, incorporating new elements within the migration context. However, meals from their family territory are made by replacing ingredients and modifying the cooking base, trying to keep the seasoning base as similar as possible. Although the production of the same vegetal species (e.g. certain varieties of potatoes, maize or “ajies”) from the place of origin does not have the same characteristics in the new context (like performance, size or flavor), it is important to emphasize that migrant people continue consuming the same products from purchase, exchange or shipment through family. In this sense, consumption has an important role, giving the possibility to reproducing a particular family farming type of organization.
Thus, availability and access to raw materials are key issues that different communities have managed to overcome, especially through fairs and “ethnic” retailers (often first generations of migrant) [7] who provide the community with their own cuisine elements. Migrant families always mention their constant craving for local food (even those family members of the following generations who have never been there). The community memory of meals made of maize, potatoes or peppers is one of the substantial elements that link all those families together and strengthen the connection with their home territory.


Discussion

Given the geographical features of Florencio Varela, a fundamental aspect of highland families’ migration process is the replication of productive structures that respond to Andean patterns of family farming (type of organization, predominantly reliant on family labor, technology, cultivated species, farming techniques, among others) [8]. The characteristics of this replication enhance the possibility to produce much of those foods that remain in the community’s representation of their territory. In this sense, migrant families carry certain knowledge along and are connected to the new territory through practices and representations taken from the highlands, but with added meanings regarding their migrant trajectory. The fact that migrant families are able to obtain farming smallholdings in peri-urban lowlands, and hence the possibility of job opportunities in which they are able to use knowledge and memories from their home territory, consolidated the migrant process through family farming practices. This case study shows the importance of family farming in both an economic dimension, and in terms of cultural heritage, including notions of healthy and suitable food with strong identity ties, that keeps both territories connected.

To Know More About Agriculture Research and Technology-Open Access Journal Please click on:

To Know More About Open Access Journals Please click on: ttps://juniperpublishers.com/index.php  

Artificial Intelligence System for Value Added Tax Collection via Self Organizing Map (SOM)- Juniper Publishers

  Forensic Sciences & Criminal Investigation - Juniper Publishers Abstract Findings:  Based on our experiments, our approach is an effec...